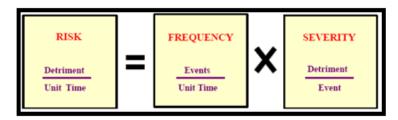
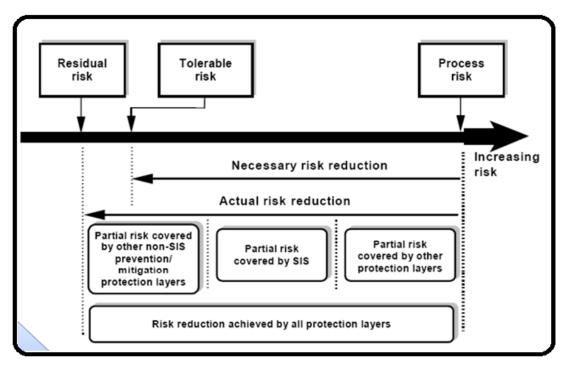
Equipment & Process Design

Safety Integrated Level (SIL) Verification



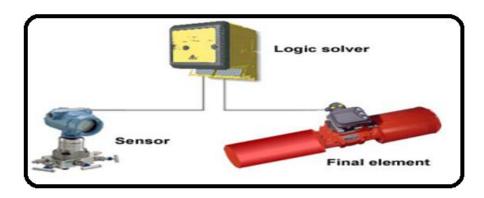


General Definition

What is risk?

A Risk is the amount of harm that can be expected to occur during a given time period due to specific harm event.

Safety related system consists of:

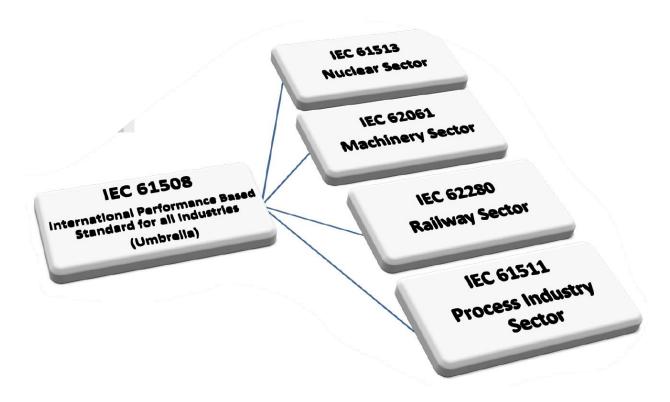

- Mechanical protection system
- Passive protection system
- Basic process control system
- Alarms
- Safety instrumented system (SIS)

What is SIS?

A relative level of risk-reduction provided by a safety function, or to specify a target level of risk reduction. In simple terms, SIL is a measurement of performance required for a Safety Instrumented Function (SIF).

Notes

- 1. The function of SIS is called SIF. More than one SIF could be allocated to a SIS.
- 2. A SIS consists of a sensor, logic solver and final element.



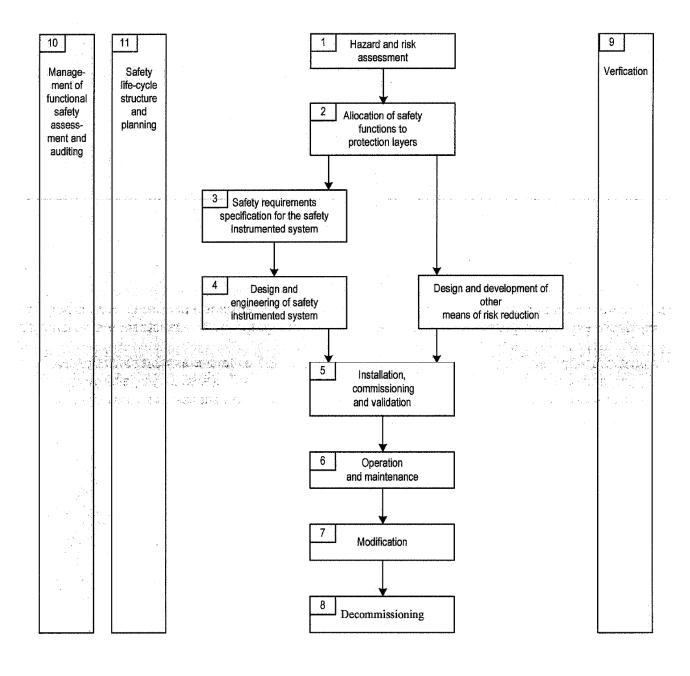
3. The ability of a SIS is to carry out the actions necessary to achieve a safe state in process.

4. Standards: IEC-60508 for general industry and IEC-60511 for oil and gas industry.

IEC-61508:

Functional Safety of Electrical/Electronic/Programmable Electronic Safety Related Systems

IEC-61511:


Functional safety –safety instrumented systems for the process industry sector

ANSI ISA-84.00.01:

Application of Safety Instrumented Systems for the Process Industries

Lifecycle from IEC 61511

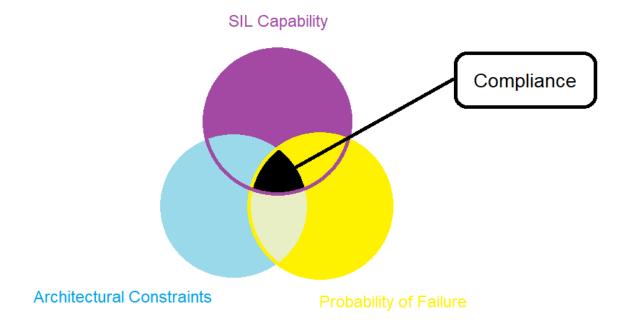
Stages of SIL Study

1.Target SIL Evaluation

What SIL should be allocated for the SIF?

2.SIL Verification

Does SIS fulfill Target SIL requirements?



SIL Verification Procedure

In order to verify the selected SIL in a loop, 3 components should be taken into account.

- A. SIL capability stated in the certificate
- B. Calculate PFD for each and then sum them and find the corresponding SIL
- C. Check architectural constrains by checking first rout.

	Device		SIL Capability	Pro	bability of Failure		Architectural Constraints			tectural Constraints
Item	Brand	Model	Systematic Integrity	Lambda(DU)	Test interval (hr)	PFD	Туре	SFF	HFT	Max Allowable SIL Based on Route H1
Transmitter										
Barrier input										
Logic Solver										
Barrier Output										
Solenoid Valve										
Actuator										
Valve										
SIS										

Equipment & Process Design

1.SIL capability stated in the certificate

......

Certificate / Certificat Zertifikat / 合格証

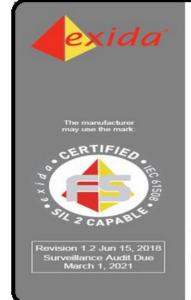
MII 1211027 C001

exida hereby confirms that the:

SSX/SST Isolator/Splitter Moore Industries - International North Hills, CA - USA

Has been assessed per the relevant requirements of:

IEC 61508 : 2010 Parts 1-7


and meets requirements providing a level of integrity to:

Systematic Capability: SC 3 (SIL 3 Capable)

Random Capability: Type A, Route 1_H Device PFH/PFD_{avg} and Architecture Constraints must be verified for each application

Safety Function:

The SSX/SST transmits the input signal to the output port(s) within the stated safety accuracy.

Certificate / Certificat Zertifikat / 合格証

EPM 1601047 C001

exida hereby confirms that the:

Fisher™ 249 Displacer Sensors with FIELDVUE™ DLC3100 SIS Digital Level Controller

Emerson Automation Solutions Fisher Controls International, LLC Marshalltown, IA - USA

Has been assessed per the relevant requirements of:

IEC 61508 : 2010 Parts 1-7

and meets requirements providing a level of integrity to:

Systematic Capability: SC 2 (SIL 2 Capable)

Random Capability: Type B, SIL 2@HFT=0, Route 1_H Device

PFD_{avg} and Architecture Constraints must be verified for each application

2.Calculate PFD for each and then sum them and find the corresponding SIL Primary Definitions:

Failure Frequency:

The probability that a system fails during a specified period of time.

Mean Time To Fail (MTTF)

Probability of Failure upon Demand (PFD): equals to λ times TI divided by 2 if λ .TI<<1. It is assumed that after each time interval the equipment is as new as first day. Time interval is really important when regarding sil target.

$$PFD_{avg} = \left[\lambda^{DU} \times \frac{TI}{2}\right]$$

Test intervals (TI) (directly affects PFD)

SIL Rating	Range of PFD	Range of RRF
4	10 ⁻⁵ ≤PFD<10 ⁻⁴	100,000≥RRF>10,000
3	10 ⁻⁴ ≤PFD<10 ⁻³	10,000≥RRF>1,000
2	10 ⁻³ ≤PFD<10 ⁻²	1,000≥RRF>100
1	10 ⁻² ≤PFD<10 ⁻¹	100≥RRF>10

3. Check architectural constrains by checking first rout.

Primary Definition

HFT (Hardware Fault Tolerance): maximum number of failures that can be tolerated in a SIS component

HFT for the following system:

SYSTEM	HTF
1001	0
1002	1
1003	2
2002	0
2003	1
2004	2

SFF (Safe Failure Fraction): fraction of safe failures.

SIF Failure Modes

Based on consequence

- Safe
- Dangerous

Based on diagnostic

- Detected (overt)
- Undetected (covert, hidden)

Safe/Detected: λ^{SD} Safe/Undetected: λ^{SU} Dangerous/Detected: λ^{DD} Dangerous/Undetected: λ^{DU}

SFF = (Ysd + Ysu + Ydd)/(Ysd + Ysu + Ydd + Ydu)

Subsystem type A: A subsystem can be regarded as type A if, for the components required to achieve the safety function

the failure modes of all constituent components are well defined; and the behavior of the subsystem under fault conditions can be completely determined; and there is sufficient dependable failure data from field experience to show that the claimed rates of failure for detected and undetected dangerous failures are met.

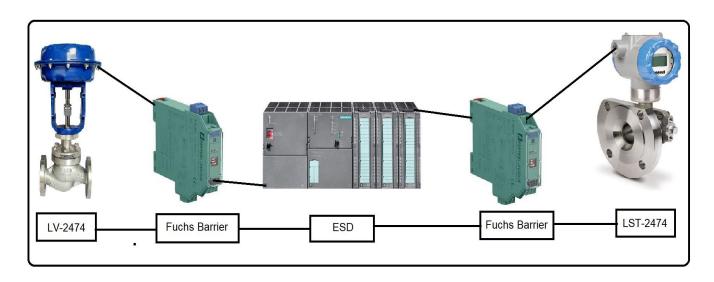
Subsystem type B: A subsystem shall be regarded as type B, if for the components required to achieve the safety function

the failure mode of at least one constituent component is not well defined; or the behavior of the subsystem under fault conditions cannot be completely determined; or there is insufficient dependable failure data from field experience to support claims for rates of failure for detected and undetected dangerous failures.

Simplifying, one can say that as long as programmable or highly integrated electronic components are used, a subsystem must be considered as type B.

......

Architectural Constraints (Route 1H) (IEC 61508 part 2 -table 2)


Safe Failure Fraction (SFF)	Ту	pe A eleme	nts	Type B elements			
	Hardware	Fault Tolera	nce (HFT)	Hardware Fault Tolerance (HFT)			
	0	1	2	0	1	2	
<60%	SIL1	SIL2	SIL3	Not Allowed	SIL1	SIL2	
60% - <90%	SIL2	SIL3	SIL4	SIL1	SIL2	SIL3	
90% - <99%	SIL3	SIL4	SIL4	SIL2	SIL3	SIL4	
≥99%	SIL3	SIL4	SIL4	SIL3	SIL4	SIL4	

Equipment & Process Design

Real Case Example

Equipment & Process Design

Calculation

1.SIL capability stated in the certificate

Certificate / Certificat Zertifikat / 合格証

MII 1211027 C001

exida hereby confirms that the:

SSX/SST Isolator/Splitter

Moore Industries - International
North Hills, CA - USA

Has been assessed per the relevant requirements of:

IEC 61508: 2010 Parts 1-7

and meets requirements providing a level of integrity to:

Systematic Capability: SC 3 (SIL 3 Capable)
Random Capability: Type A, Route 1_H Device

• TüV Certified IEC 61508 SIL 3.

Rockwell Automation Publication PD_T8110B/T8110

Issue 22

Certificate / Certificat

Zertifikat / 合格証

FLO 1301106 C006

exida hereby confirms that the:

FlowAct Diaphragm Actuator Flowserve Corporation Springville, UT – USA

(Certificate Holder)

Has been assessed per the relevant requirements of:

IEC 61508: 2010 Parts 1-7

and meets requirements providing a level of integrity to:

Systematic Capability: SC 3 (SIL 3 Capable)

Random Capability: Type A, Route 2_H Device

2.Calculate PFD for each and then sum them and find the corresponding SIL

Device	λ	TI	PFD	PFD
Level Transmitter	5.4E-08	8760	λ³. TI³/4	2.65E-11
Barrier input	5.30E-08	8760	λ. TI /2	2.32E-04
Logic Solver	3.012E-09	8760	λ. TI /2	1.32E-04
Barrier Output	5.30E-08	8760	λ. TI /2	2.32E-04
Solenoid Valve	1.88E-07	8760	λ. TI /2	8.23E-04
Actuator	1.56E-07	8760	λ. TI /2	6.83E-04
Globe Valve	8.16E-07	8760	λ. TI /2	3.57E-03
				5.68E-03

:	SIL Rating	Range of PFD	Range of RRF
	4	10 ⁻⁵ ≤PFD<10 ⁻⁴	100,000≥RRF>10,000
	3	10 ⁻⁴ ≤PFD<10 ⁻³	10,000≥RRF>1,000
	2	10 ⁻³ ≤PFD<10 ⁻²	1,000≥RRF>100
	1	10 ⁻² ≤PFD<10 ⁻¹	100≥RRF>10

3. Check architectural constrains by checking first rout.

1. Level Transmitter

Random Integrity: SIL 2 @ HFT=0 SIL 3 @ HFT=1									
Summary for the VEGACAP 60 Level Switch: Type B device IEC 61508 failure rates in FIT [:=10-9/h] Model Fail-Safe state λsp λsp λsp λpp λpp									
R Max / High trip	Out De-energiz	·	λ _{SD}	λ _{SU}	λ _{DD}	λ _{DU} 54			
R Min / Low trip	Out De-energiz		0	440	116	52			
T Max / High trip	Out De-energiz		0	395	115	35			
T Min / Low trip	Out De-energiz	zed	0	397	115	33			
Z Max / High trip	Out > 13 mA		38	245	130	35			
Z Min / Low trip	Out < 11 mA		69	241	98	40			

Safe Failure Fraction (SFF)	Ту	pe A elemen	nts	Type B elements			
	Hardware	Fault Tolera	nce (HFT)	Hardware Fault Tolerance (HFT)			
	0	1	2	0	1	2	
<60%	SIL1	SIL2	SIL3	Not Allowed	SIL1	SIL2	
60% - <90%	SIL2	SIL3	SIL4	SIL1	SIL2	SIL3	
90% - <99%	SIL3	SIL4	SIL4	SIL2	SIL3	SIL4	
≥99%	SIL3	SIL4	SIL4	SIL3	SIL4	SIL4	

2.Barrier Input / Output

Random Capability: Type A, Route 1_H Device

PFH/PFD_{avg} and Architecture Constraints must be verified for each application

Systematic Capability:

The product has met manufacturer design process requirements of Safety Integrity Level (SIL) 3. These are intended to achieve sufficient integrity against systematic errors of design by the manufacturer.

A Safety Instrumented Function (SIF) designed with this product must not be used at a SIL level higher than stated.

Random Capability:

The SIL limit imposed by the Architectural Constraints must be met for each element.

IEC 61508 Failure Rates in FIT1

Model Number	$\lambda_{ extsf{SD}}$	λ_{su}	$\lambda_{ extsf{DD}}$	$\lambda_{ extsf{DU}}$
4-20 mA loop SSX/4-20mA/4-20MA/12-42DC [DIN]	0	157	0	53
4-20 mA loop SST/4-20mA/4-20MA/24DC [DIN]	0	244	0	65
4-20 mA loop SST/4-20mA/2X4-20MA/117AC [DIN]	0	293	0	77

Safe Failure Fraction (SFF)	Ту	pe A eleme	nts	Type B elements			
	Hardware	Fault Tolera	nce (HFT)	Hardware Fault Tolerance (HFT)			
	0	1	2	0	1	2	
<60%	SIL1	SIL2	SIL3	Not Allowed	SIL1	SIL2	
60% - <90%	SIL2	SIL3	SIL4	SIL1	SIL2	SIL3	
90% - <99%	SIL3	SIL4	SIL4	SIL2	SIL3	SIL4	
≥99%	SIL3	SIL4	SIL4	SIL3	SIL4	SIL4	

Equipment & Process Design

3. Selonoid Valve

Random Capability: Type A Element

SIL 2 @ HFT=0; SIL 3 @ HFT = 1; Route 2_H

PFD_{AVG} and Architecture Constraints must be verified for each application

SC 3 (SIL 3 Capability):

The product has met manufacturer design process requirements of Safety Integrity Level (SIL) 3. These are intended to achieve sufficient integrity against systematic errors of design by the manufacturer.

A Safety Instrumented Function (SIF) designed with this product must not be used at a SIL level higher than stated.

Random Capability:

The SIL limit imposed by the Architectural Constraints for each element.

IEC 61508 Failure Rates in FIT*

For valves used in a final element assembly, SIL must be verified for the specific application using the following failure rate data.

Failure rates for the Series 327/8327 Solenoid Valves in FIT*

Model	Failure Category	λ_{sd}	λ_{su}	λ_{dd}	λ_{du}
	De-Energize to Trip	0	516	0	188
327B0/B327G	Energize To Trip	0	86	0	568
32760/03276	De-Energize to Trip W/PVST	516	0	186	2
	Energize To Trip W/PVST	86	0	562	6
	De-Energize to Trip	0	216	0	188
327B1&2	Energize To Trip	0	86	0	268
3270102	De-Energize to Trip W/PVST	216	0	186	2
	Energize To Trip W/PVST	86	0	265	3
	De-Energize to Trip	0	141	0	188
327B3	Energize To Trip	0	86	0	193
32703	De-Energize to Trip W/PVST	141	0	186	2
	Energize To Trip W/PVST	86	0	191	2
	De-Energize to Trip	0	177	0	193
327B3(WS)IS	Energize To Trip	0	86	0	246
327D3(W3)I3	De-Energize to Trip W/PVST	177	0	191	2.0
	Energize To Trip W/PVST	86	0	244	2.0
	De-Energize to Trip	0	549	0	214
327A6	Energize To Trip	0	121	0	640
321A0	De-Energize to Trip W/PVST	549	0	211	2

	Ту	pe A elemen	nts	Type B elements		
Safe Failure Fraction (SFF)	Hardware Fault Tolerance (HFT)		Hardware Fault Tolerance (HFT)			
Timenen (err)	0	1	2	0	1	2
<60%	SIL1	SIL2	SIL3	Not Allowed	SIL1	SIL2
60% - <90%	SIL2	SIL3	SIL4	SIL1	SIL2	SIL3
90% - <99%	SIL3	SIL4	SIL4	SIL2	SIL3	SIL4
≥99%	SIL3	SIL4	SIL4	SIL3	SIL4	SIL4

Type A elements			
Hardware Fault Tolerance (HFT)			
0	1	2	
SIL1	SIL2	SIL3	

Equipment & Process Design

4.Actuator

Random Capability: Type A, Route 2_H Device

PFH/PFD_{avg} and Architecture Constraints must be verified for each application

Systematic Capability:

The product has met manufacturer design process requirements of Safety Integrity Level (SIL) 3. These are intended to achieve sufficient integrity against systematic errors of design by the manufacturer.

A Safety Instrumented Function (SIF) designed with this product must not be used at a SIL level higher than stated.

Random Capability:

The SIL limit imposed by the Architectural Constraints must be met for each element. This device meets exida criteria for Route 2_H .

IEC 61508 Failure Rates in FIT1

Device	λ_{SD}	λsu	$\lambda_{ extsf{DD}}$	λου
Air To Retract or Air To Extend	0	558	0	156
Air To Retract or Air To Extend with PVST	552	6	95	61

SFF = 558 / (558 + 156) = 78.15%

	Type A elements			Type B elements			
Safe Failure Fraction (SFF)	Hardware	Hardware Fault Tolerance (HFT)			Hardware Fault Tolerance (HFT)		
(011)	0	1	2	0	1	2	
<60%	SIL1	SIL2	SIL3	Not Allowed	SIL1	SIL2	
60% - <90%	SIL2	SIL3	SIL4	SIL1	SIL2	SIL3	
90% - <99%	SIL3	SIL4	SIL4	SIL2	SIL3	SIL4	
≥99%	SIL3	SIL4	SIL4	SIL3	SIL4	SIL4	

Type A elements			
Hardware Fault Tolerance (HFT)			
0	1	2	
SIL1	SIL2	SIL3	

Results

SIL Capability	SIL 3
Probability of Failure	SIL2
Architectural Constraints	SIL1
Verified SIL	SIL1

References and Software

Failure Rate Data

- OREDA -SINTEF
- PERD-CCPS
- TECDOC & EIREDA-IAEA
- SERH -Exida
- GS EP EXP 405 TOTAL
- www.sael-online.com

Software

- exSILentiaby exida, www.exida.com
- SILSolverby SIS-Tech, www.sis-tech.com
- SILCoreby ACM (Canada), www.silcore.com
- AEShieldby AE Solutions, www.aesolns.com