Flowmeters

Selection, Sizing, Troubleshooting

From Basic Design to Start-up

Educational Institute for Equipment and Process Design

CONTENT

Торіс	Duration
General Procedure	1 min
Selection Pattern	5 min
Examples	10 min
Sizing- Coriolis flowmeter	5 min
Sizing-Vortex flowmeter	5 min
Sizing-Orifice flow meter	5 min
Piping Design Consideration	6 min
Algorithm of calculation	6 min
Our Mistake and Experience	5 min
Summarization	7 min
Vendor List	2 min
Total	1 hour

General Procedure

- 1. Selection
- 2. Sizing
- 3. Installation
- 4. Start-up
- 5. Normal Operation

Selection Pattern

Application	Flowmeter Type
Gas station	Ultrasonic
Fuel system	Ultrasonic-Turbine-Vortex
Fluid with high amount of conductivity	Magnetic
Fluids with conductivity less than 5 us/m	Vortex
Low pressure gases	Venturi
High pressure steam services	Flow nozzle
High erosion present	Flow nozzle
Battery limit-Product	Coriolis
Process unit where controlling parameters is a high priority	Orifice

TURBINE OR PROPELLER TYPE FLOW METER ANNUBAR TYPE FLOW ELEMENT

X

┢╸

FLOW NOZZLE

Л

VENTUR

) (

ROTAMETER

AVERAGE PILOT TUBE OR ANNUBAR POSITIVE DIS-PLACEMENT METER

8

m

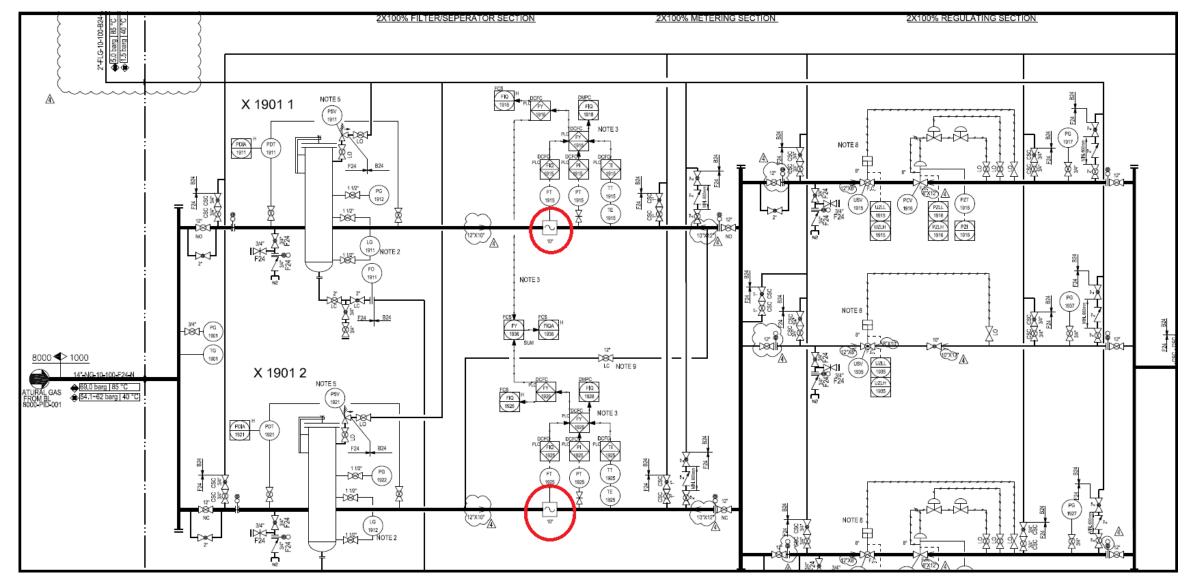
VORTEX FLOWMETER

Δ

ULTRASONIC FLOWMETER

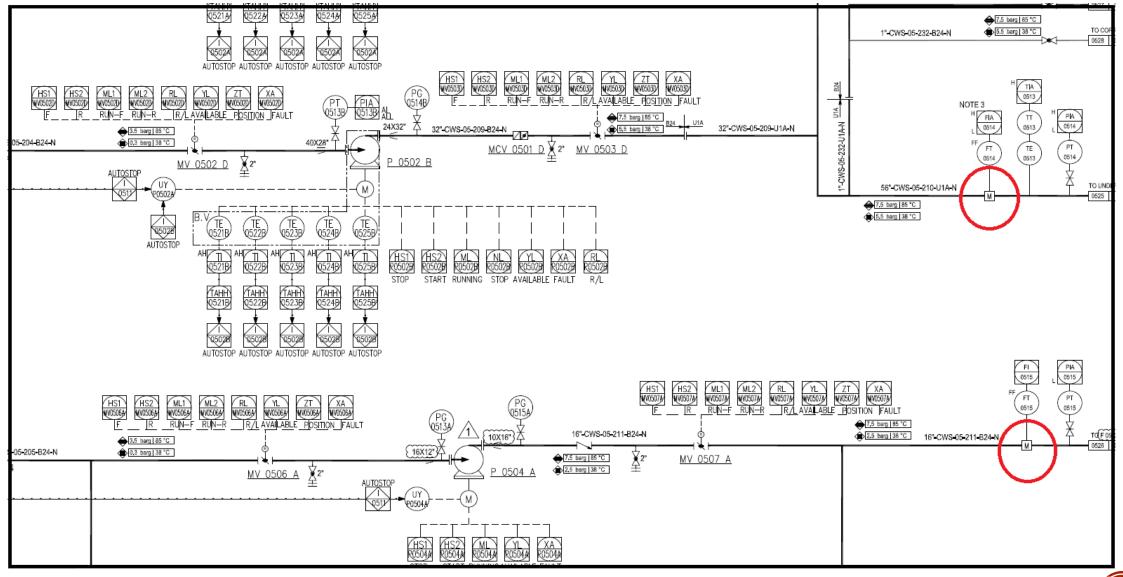
ς

CORIOLIS FLOWMETER

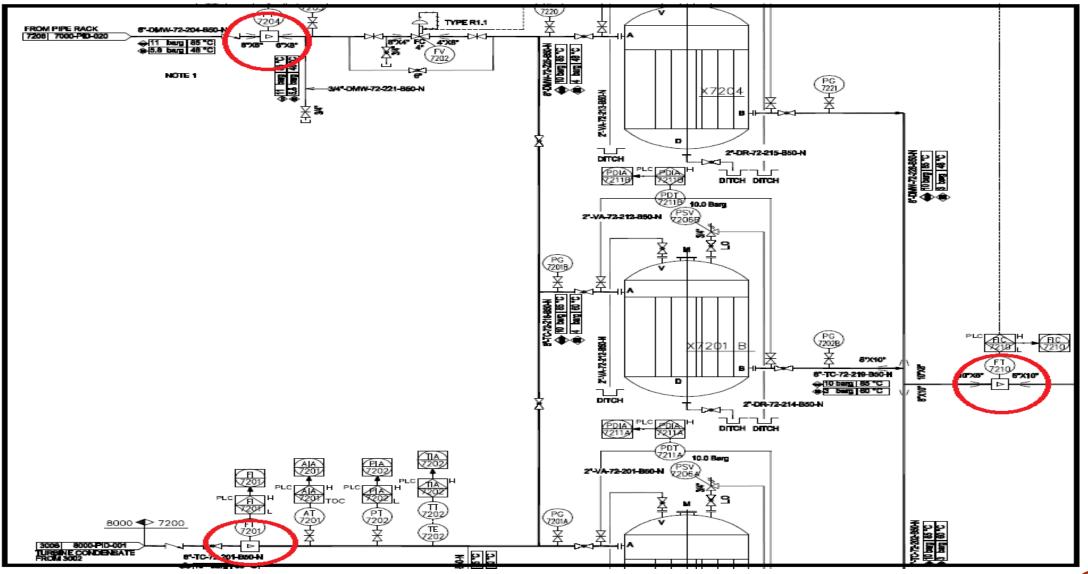

5

MAGNETIC FLOWMETER

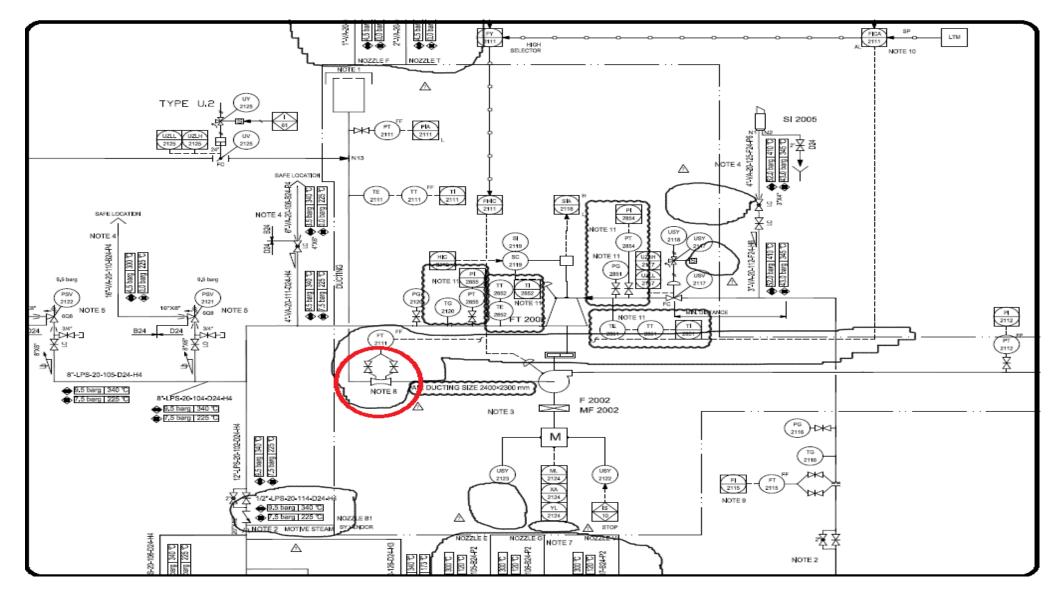
Ν



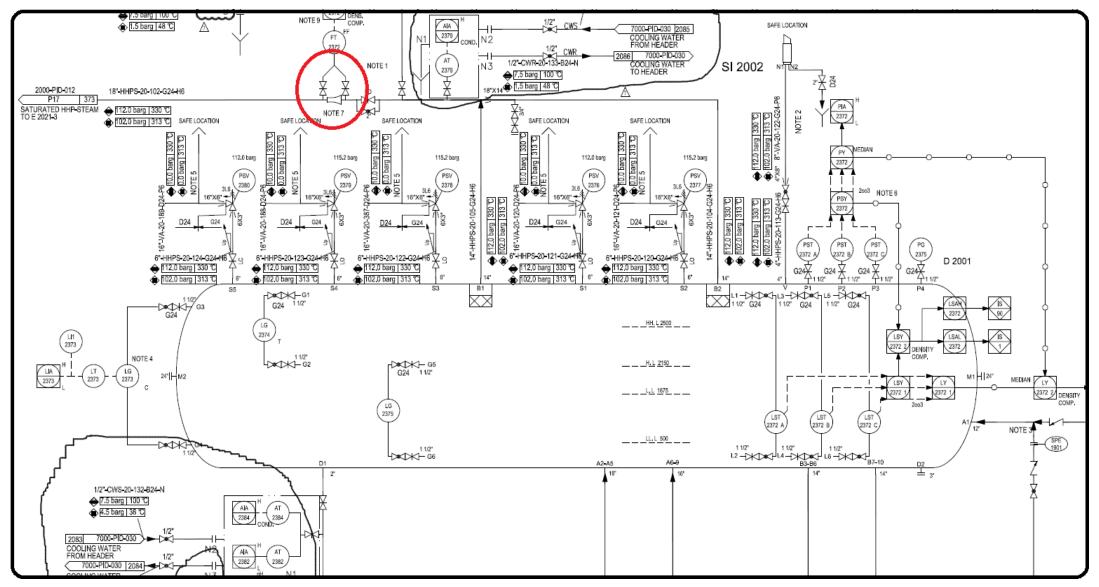
GAS STATION



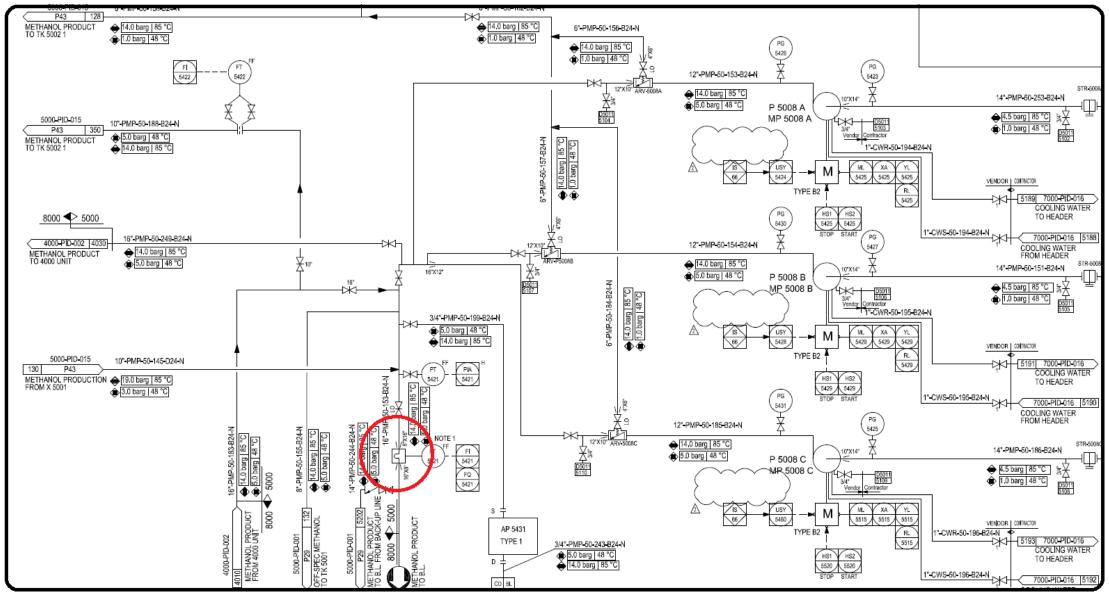
FLUID WITH HIGH AMOUNT OF CONDUCTIVITY- COOLING WATER SYSTEM



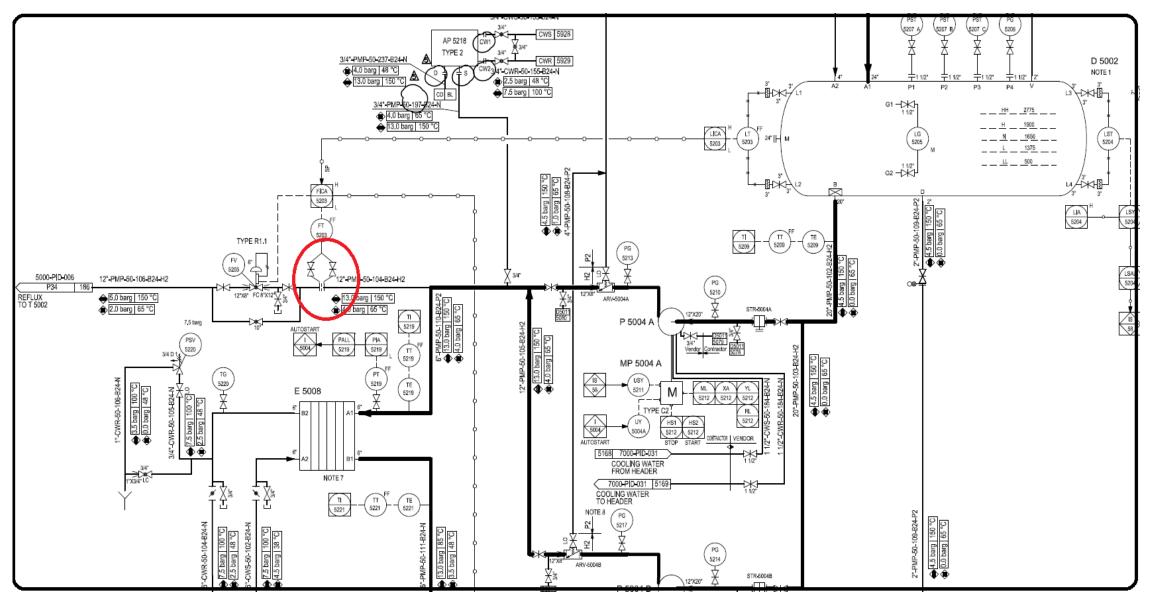
FLUIDS WITH CONDUCTIVITY LESS THAN 5 US/M-POLISHING UNIT

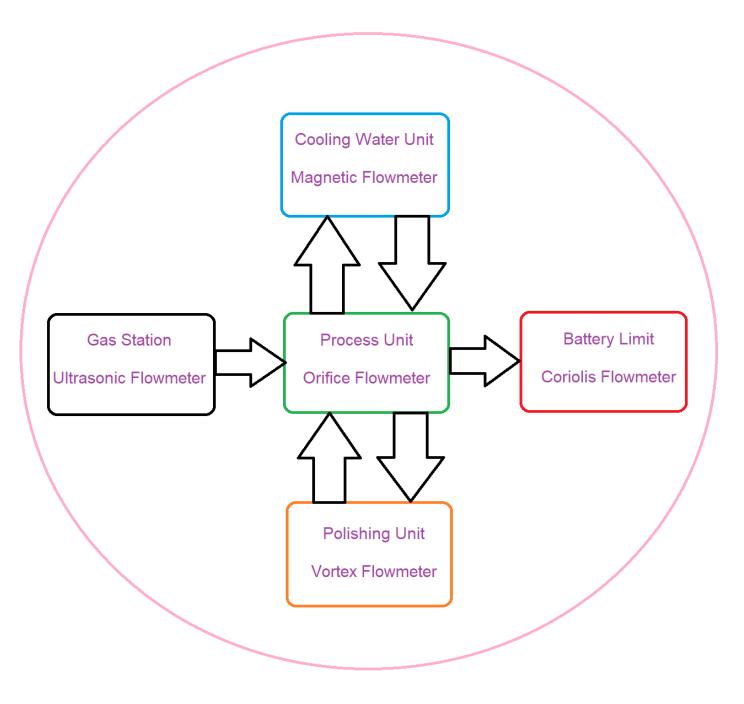


LOW PRESSURE GASES-COMBUSTION AIR



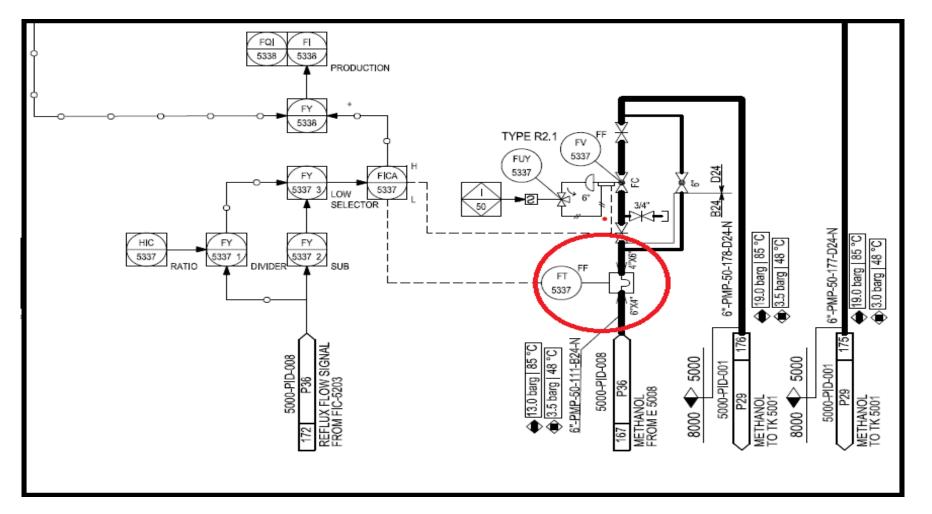
HIGH PRESSURE STEAM SERVICES-STEAM DRUMS




BATTERY LIMIT-PRODUCT

 \bigcirc

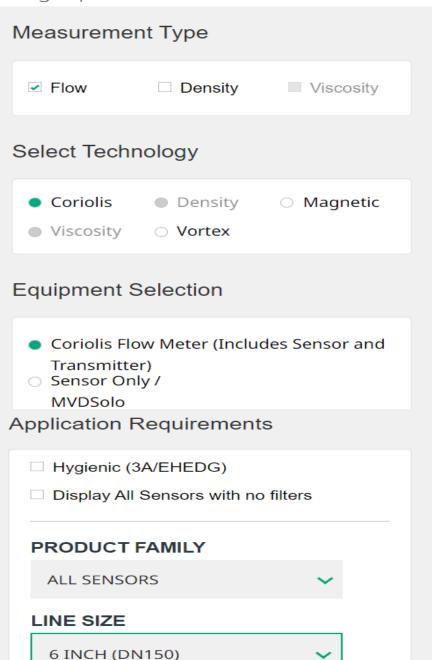
PROCESS UNIT WHERE CONTROLLING PARAMETERS IS A HIGH PRIORITY



FLOWMETER SIZING

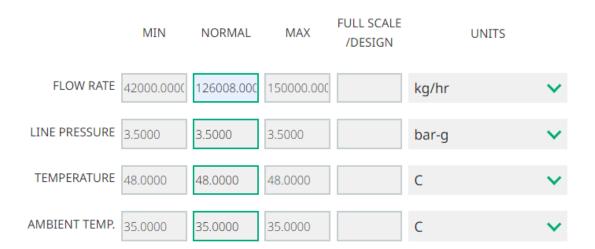
EXAMPLE : METHANOL

EMERSON FLOWMETER SIZING

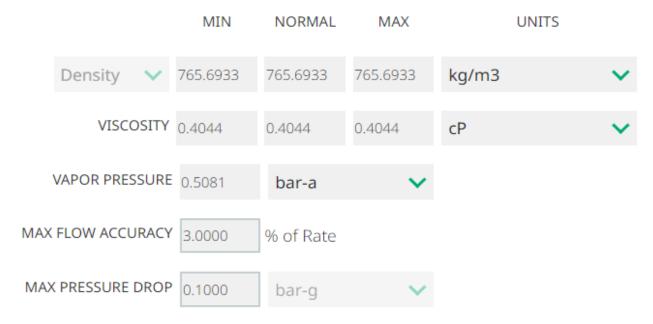


Flow Transmitter, Mass Coriolis

Sizing Flow	150000 kg/h
Minimum Flow	42003 kg/h
Normal Flow	126008 kg/h
Fluid Phase	Liquid
Sizing Pressure	3.5 bar g
Sizing Temperature	
Sizing Density	766 kg/m3
Sizing Viscosity	0.40 cP
Sizing Moleweight	
Meter size	6"
Material	AISI 316
Flange: Size, Rating, Type	6", Class 150, RF
Max. Allowable Pressure Drop	<<0.1 bar

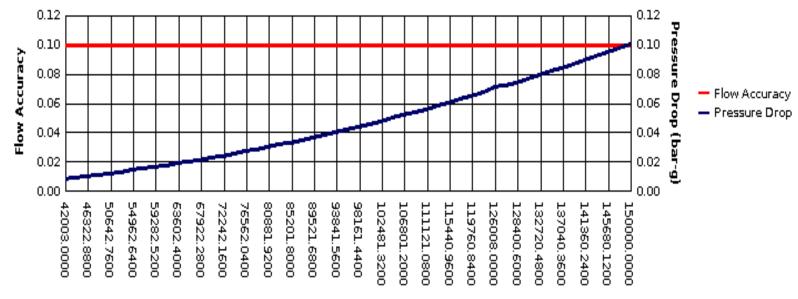

Sizing Input

Fluid Selection


FLUID STATE LIQUID FLUID SOURCE DATABASE PICK FROM FLUIDS DATABASE METHANOL

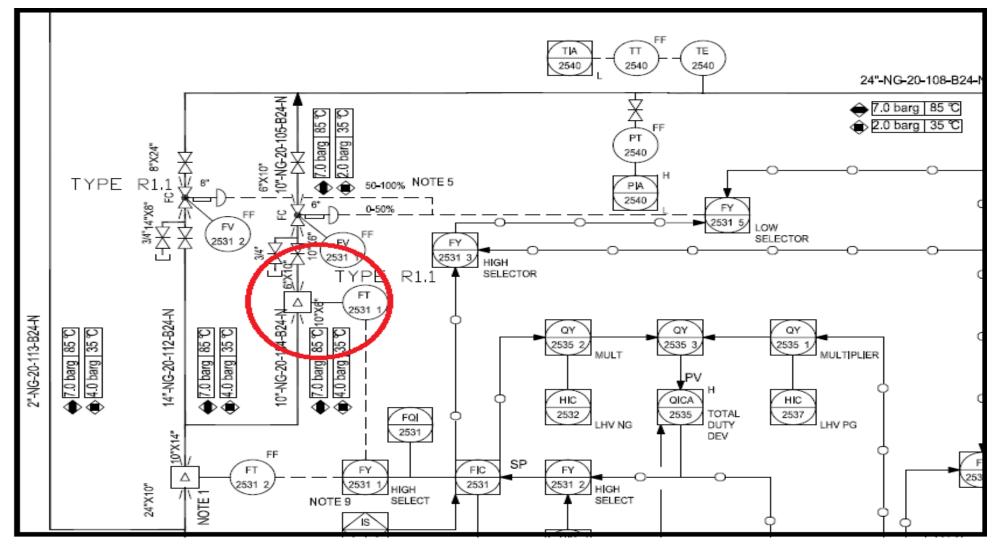
OPERATING CONDITIONS

FLUID PROPERTIES


RESULT

		MASS F	LOW RATE ACC	URACY	PR	ESSURE DRC (BAR))P	τu	(M/SEC)	Y	DENSITY 🔺	FLOW	
MODEL NAME	COMPARE	MIN 🍦		MAX $^{\diamond}$	MIN ^{\$}		MAX	MIN ^{\$}		max [‡]	ACCURACY (KG/M3)	RATE REPEATABILITY	MODEL DESCRIPTION
CMFHC4M		0.3098	0.1033	0.1	0.0003	0.0025	0.0035	0.3639	1.0916	1.2994	0.5000	0.05	MICRO MOTION ELITE CORIOLIS METER, 10-14 INCH (DN250-DN350), 316L STAINLESS STEEL
CMFHC3Y		0.1976	0.1	0.1	0.0007	0.0055	0.0077	0.5685	1.7056	2.0304	0.5000	0.05	MICRO MOTION ELITE CORIOLIS METER, 8-10 INCH (DN200-DN250), SUPER DUPLEX STEEL, HIGH PRESSURE
CMFHC2G		0.1	0.1	0.1	0.0022	0.0167	0.0233	0.9398	2.8195	3.3563	1.0000	0.05	MICRO MOTION ELITE CORIOLIS METER, 8 INCH (DN200), 316L STAINLESS STEEL
СМҒНСЗА		0.1976	0.1	0.1	0.0007	0.0055	0.0077	0.5685	1.7056	2.0304	0.5000	0.05	MICRO MOTION ELITE CORIOLIS METER, 8-10 INCH (DN200-DN250) HIGH TEMPERATURE SENSOR; 316L STAINLESS STEEL, HIGH TEMPERATURE
CMFHC3G		0.1976	0.1	0.1	0.0007	0.0055	0.0077	0.5685	1.7056	2.0304	1.0000	0.05	MICRO MOTION ELITE CORIOLIS METER, 10 INCH (DN250), 316L STAINLESS STEEL

FLOW RATE (LITRES/HR)	MASS FLOW ACCURACY	PRESSURE DROP (BAR)	VELOCITY	REYNOLDS NUMBER	\$
150000.0000	0.1	0.0077	2.0304	439455.5008	
139200.3000	0.1	0.0066	1.8842	407815.5837	
128400.6000	0.1	0.0057	1.7380	376175.6665	
126008.0000	0.1	0.0055	1.7056	369166.0583	
117600.9000	0.1	0.0048	1.5918	344535.7494	
106801.2000	0.1	0.0040	1.4456	312895.8322	
96001.5000	0.1	0.0033	1.2995	281255.9151	
85201.8000	0.1	0.0026	1.1533	249615.9979	
74402.1000	0.1116	0.0020	1.0071	217976.0808	
63602.4000	0.1305	0.0015	0.8609	186336.1636	
52802.7000	0.1572	0.0011	0.7147	154696.2465	
42003.0000	0.1976	0.0007	0.5685	123056.3293	


Flow Rate (litres/hr)

FLOWMETER SIZING

EXAMPLE : NATURAL GAS

EMERSON FLOWMETER SIZING

Flow Transmitter, Vortex

Sizing Flow	
Minimum Flow	2800 Nm3/h
Normal Flow	8400 Nm3/h
Fluid Phase	Gas
Sizing Pressure	4 bar g
Sizing Temperature	35 °C
Sizing Density	3.30 kg/m3
Sizing Viscosity	0.12 cP
Sizing Compressibility	0.99
Sizing Cp/Cv Ratio	1.30
Sizing Moleweight	16.74
Meter size	6 "
Material	
Flange: Size, Rating, Type Located in 10" pipe	6", Class 150, RF

Sizing Input

Measurement Type									
✓ Flow	Density	Viscosity							
Select Technology									
CoriolisViscosity	DensityVortex	 Magnetic 							
Application	Requireme	nts							
METER TY	PE								
Flanged/	Wafer								
Reducer									
Dual									
Quad									

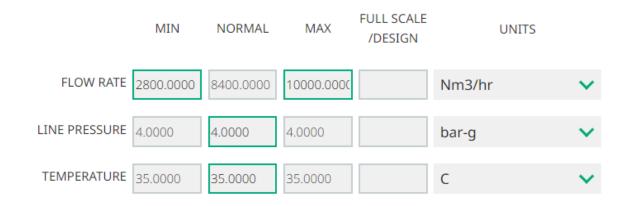
PROCESS LINE SIZE

10 INCH (DN250)

SCHEDULE

 \checkmark

Fluid Selection


FLUID STATE

GAS	~
FLUID SOURCE	
DATABASE	~
PICK FROM FLUIDS D	ATABASE


 \sim

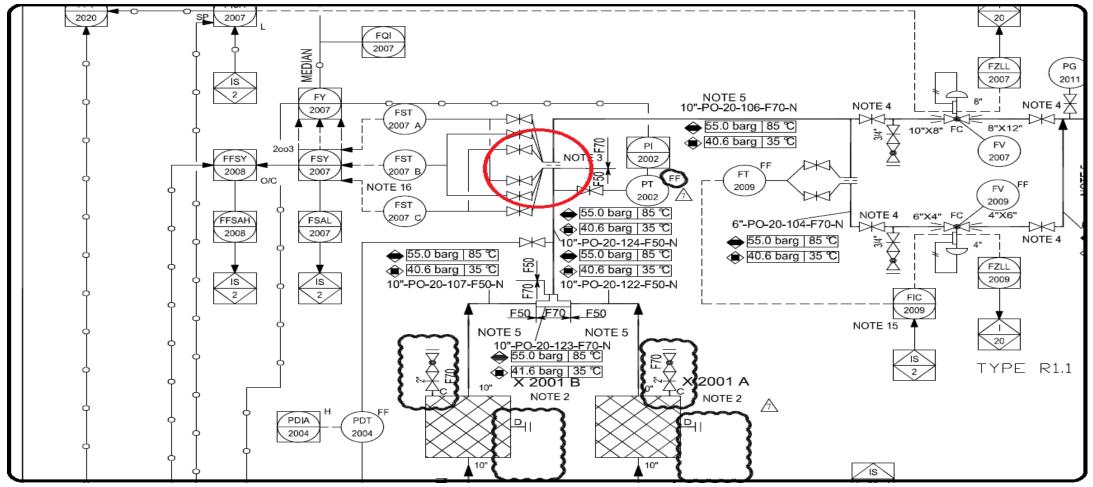
METHANE

OPERATING CONDITIONS

BASE REFERENCE CONDITIONS - GAS ONLY (FOR STANDARD/NORMAL UNIT CONVERSIONS)

FLUID PROPERTIES

PRESSURE 14.696	0 psia	~
TEMPERATURE 15.555	6 C	~
DENSITY 0.6785	kg/m3	~


	Min		Normal		Max		Full Scale /Design
Flow Rate 2 (Nm3/hr)	2800.0000		8400.000	00	10000.0000		-
Line Pressure (bar-g)	4.00	00	4.0000		4.0000		-
Temperature (C)	35.0	000	35.0000		35.0000		-
Density (kg/m3)	3.16	38	3.1638		3.1638		-
Viscosity (cP)	0.01	15	0.0115	0.0115			-
Product Name		8600DF040		8800DF0	60	8600DF080	
Product Description C F a		Optimized for cost- effective general purpose flow metering and clean fluid applications including steam air water and nitrogen.		A gasket-free non-clog meter body that eliminates potential leak points. Isolated sensors offer flow and temperature sensor replacement without breaking the process seal.		Optimized for cost- effective general purpose flow metering and clean fluid applications including steam air water and nitrogen.	
Flow Accuracy @ Minimum		1		1		1	
Flow Accuracy @ Normal		1		1		1	
Flow Accuracy @ Maximum		1		1		1	
Pressure Drop @ Minimum (bar)				0.0031		0.00	010
Pressure Drop @ 0.1413 Normal (bar)			0.0275		0.0090		
Pressure Drop @ Maximum (bar)	op @ 0.2002			0.0390		0.0127	
Velocity @ Minimun (m/sec)	ocity @ Minimum 20.3100			8.9495		5.16	83
Velocity @ Normal (m/sec)		60.9301		26.8484		15.5	6048
Velocity @ Maximur (m/sec)	m	72.5359		31.9624		18.4	581
Minimum Accurate Flow at 1% (Nm3/hr	r)	567.3041		1287.4489		2229	9.3744
Maximum Pressure rating (bar)							
Temperature Limits	(C)						
Density Accuracy @ Normal (kg/m3)	0						

FLOWMETER SIZING

EXAMPLE : PROCESS OXYGEN

EMERSON FLOWMETER SIZING

Orifice Plate Assembly

Sizing Flow Minimum Flow	
Normal Flow	
Fluid Phase	Gas
Sizing Pressure	40 bar g
Sizing Temperature	
Sizing Density	52.5 kg/m3
Sizing Viscosity	0.022 cP
Sizing Compressibility	0.98
Sizing Cp/Cv Ratio	1.39
Sizing Moleweight	32.01 kg/kmol
Sizing dP	2500 mmWG
Sizing Pipe ID, app	257.5 (10", Sch.30) mm
Sizing d/D Ratio, app	0.73
Material, Orifice Plate	Monel
Flange: Size, Rating, Type	10", Class 600, RF

Sizing Name

Enter your Sizing Information below

*This information is not included in any custom tagging requirements

Sizing Name

EIEPD

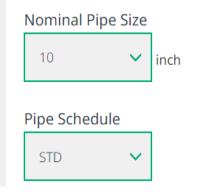
Service

Process Oxygen

Project Name

Methanol-ASU

Fluid Selection



Fluid Causes Wear And Erosion (Entrained Solids, Abrasive, Etc.)

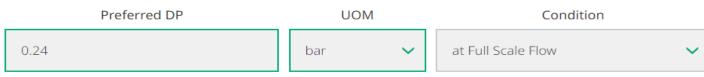
Process Pip	Pipe ID	
		10.020
Units Of Me	easurement	
Inch	Wall Th	
Pipe Cross-	Section 🥡	0.365
Circular	Rectangular	
		Flow Di
Custom Pip	e ID 🥡	Horizo
Standard	d Custom	HOHZO

Pipe Material

Stainless Steel (304, 316)	<
----------------------------	---

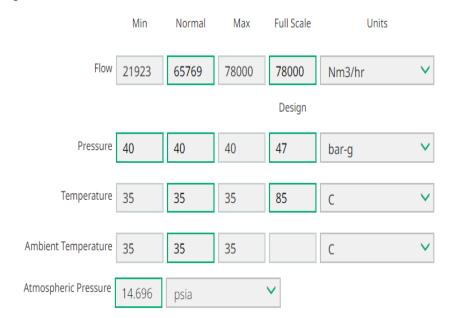
10.020inchWall Thickness.3650.365inch

Flow Direction



Primary Element Details

Rosemount 1495 Orifice Plate					
Primary Element Material					
316 Stainless Steel 🗸					
Bore Configuration 🧃					
Concentric Bore, Square Edge 🗸 🗸					
Тар Туре 🌗					
Flange Tapping 🗸 🗸					
Orifice Flange/Fitting Type					
ASME B16.36 CL 600 RF					
Add A Model 1496 Orifice Flange Union					
Calculation Standard					
ISO-5167-2 (2003) 🗸					


Solve For

Bore Size Differential Pressure

Process Variables

Operating Conditions

Rosemount 485 Annubar Primary

- Built with a patented design, the Rosemount 485 Annubar Primary Element is an averaging pitot tube that delivers reliable measurement accuracy over a wide flow range. This sensor maintains a small profile in the pipe to reduce permanent pressure loss and increase energy savings. This T-shaped sensor is capable of temperature, pressure and flow measurements via a single pipe penetration.
 - Rosemount 1495 Orifice Plate
- •

The Rosemount 1495 Orifice Plate Primary Element is engineered for reliable measurement performance. As the most common primary element used around the globe, this orifice plate offers a standard configuration with a squareedged concentric bore in both paddle and universal-type plates. This product is available in standard line sizes (2 - 24 in. or 50 - 600 mm) and is also suitable in high temperature and pressure applications.

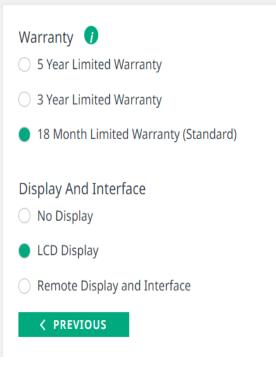
- Permanent Pressure
 Loss (PPL): Low
- Straight Run: Better
- Accuracy of Primary: ±0.75% of Rate
- Type of Installation: Insertion
- Permanent Pressure Loss (PPL): Medium
- Straight Run: Good
- Accuracy of Primary: ±0.5-1.667% of Rate
- Type of Installation: Flanged

Rosemount[™] 405P Compact Orifice Plate

The Rosemount 405P Compact Orifice Plate Primary Element provides reliable and accurate flow measurements for closed loop control, general purpose monitoring and custody transfer applications. This easy-to-install, direct mount primary element is designed for gas, liquid and steam service. Available in a range of line sizes (0.5 – 12 in. or 15 - 300 mm), this product delivers reliable performance in barch process conditions.

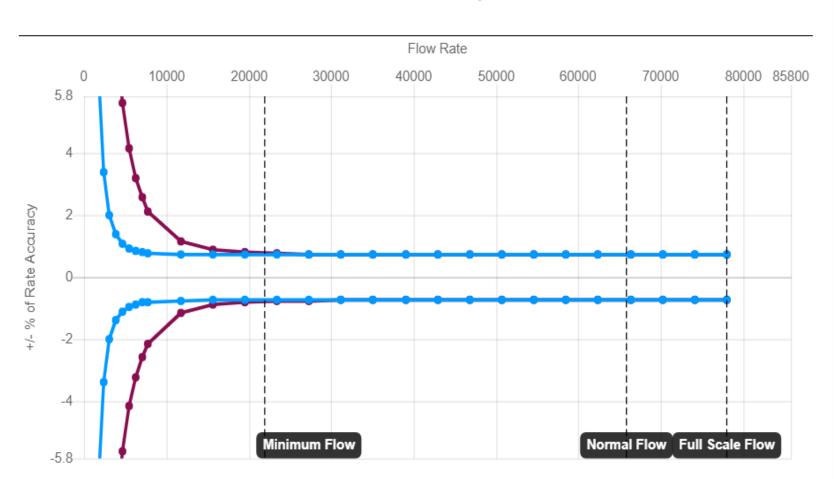
- Permanent Pressure Loss (PPL): Medium
- Straight Run: Good
- Accuracy of Primary: ±1.25-2.25% of Rate
- Type of Installation: Wafer

Sort By: Perma	nent Pressure Loss	~				
Primary Eler	nent Technology	Operating Condition Notes	Calculated Minimum Flowrate (Nm3/hr)	Differential Pressure At Minimum Flow (bar)	Differential Pressure At Normal Flow (bar)	D I S
•	Rosemount 1495 Orifice Plate Standard Bore Bore Size = 7.250 inch (DP > Preferred DP)	Best Fit	2402.9993	0.021	0.186	
•	Rosemount 1495 Orifice Plate Special Bore Bore Size = 7.371 inch (DP = Preferred DP)	Good	2510.5898	0.019	0.171	
0	Rosemount 1495 Orifice Plate Standard Bore Bore Size = 7.375 inch (DP < Preferred DP)	Good	2514.6677	0.019	0.170	



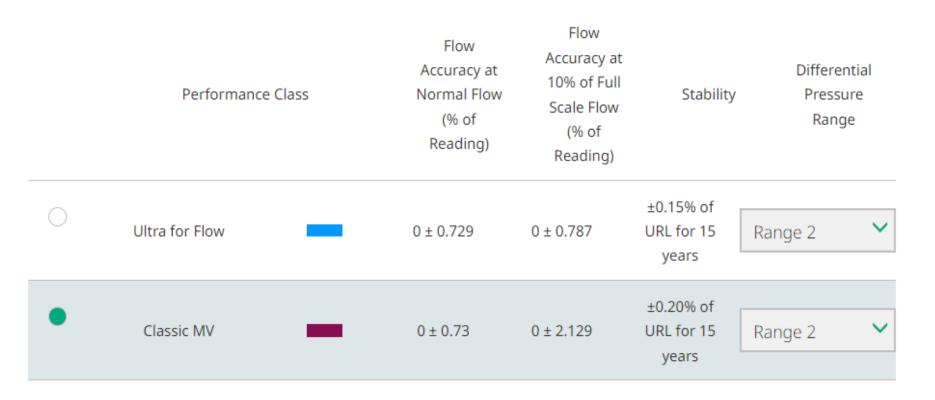
Transmitter Connection

Mounting Style Direct Mount Remote Mount
Manifold Style Conventional
Transmitter Details
Communication Protocol 4-20mA HART®
Flow Calculations 7
O No Flow Calculations
Measurement Type
 Differential Pressure Static Pressure
 Process Temperature Accuracy and Long Term Stability ()
Optimized for Flow (15 Year Stability, 14:1 Flow Turndown, 0.04% of Reading Accuracy)

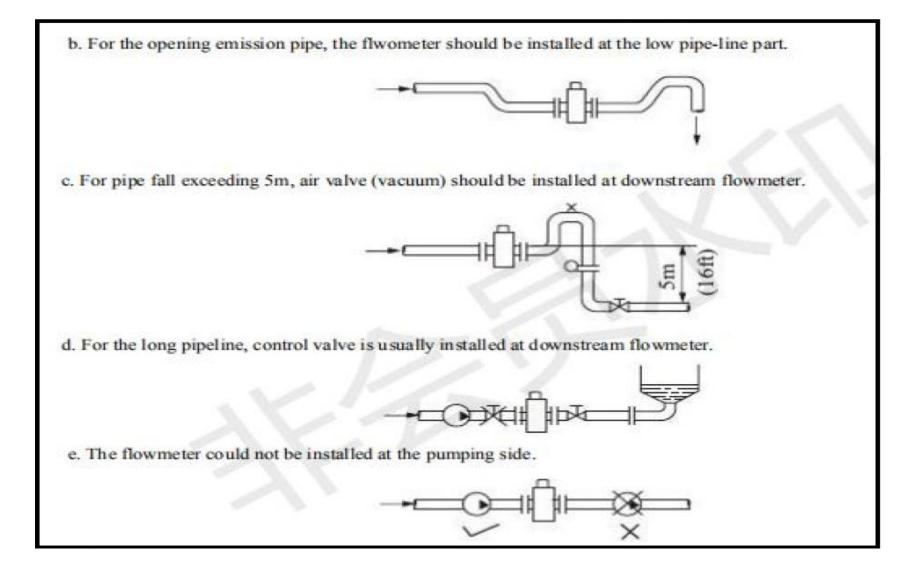

Industry Leading (15 Year Stability, 8:1 Flow Turndown, 0.04% of Span Accuracy)

Transmitter Capabilities

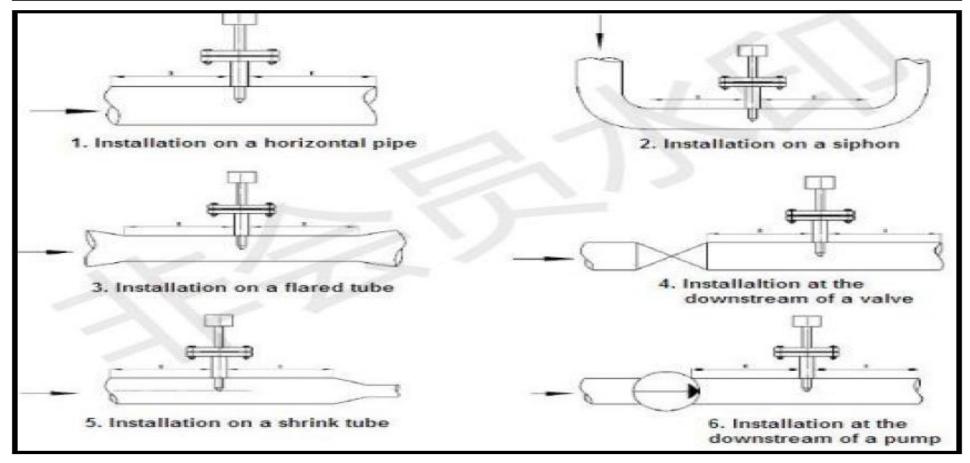
NEXT >



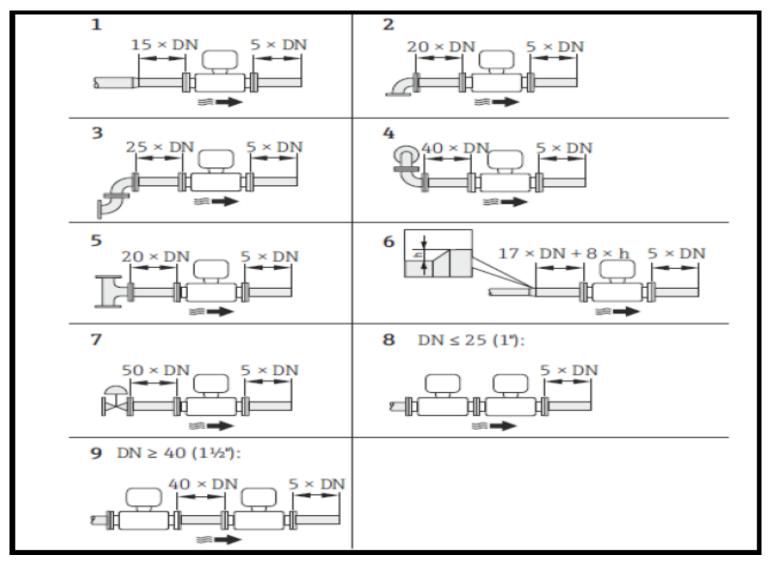
Flow Accuracy


20

Rosemount™ 3051S MultiVariable™ Pressure Transmitter and 1495 Orifice Plate



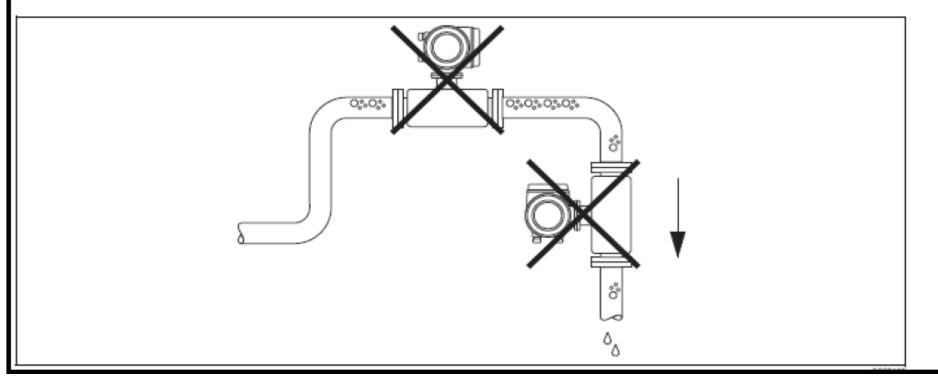
INSTALLATION PIPING DESIGN CONSIDERATION MAGNETIC FLOWMETER



Pipe installation type	Installation diagram	Upstream part	Downstream pant
Horizontal pipe	1	10D	5D
Syphon	2	20D	5D
Flared tube	3	20D	10D
Downstream of valve	4	20D	5D
Shrink tube	5	10D	10D
Downstream of pump	6	30D	1 0D
Mixed liquid	7	30D	5D

INSTALLATION PIPING DESIGN CONSIDERATION VORTEX FLOWMETER

INSTALLATION PIPING DESIGN CONSIDERATION MASS FLOWMETER


Mass flowmeter

3.1 Installed on site

Entrained air or gas bubbles in the measuring tube can result in an increase in measuring errors Avoid the following mounting locations in the pipe:

Highest point of a pipeline. Risk of air accumulating.

Directly upstream from a free pipe outlet in a vertical pipeline

PRE-COMMISSIONING AND START-UP

Standard Algorithms

Pressure, Temperature and Mole Weight Compensation of Flow

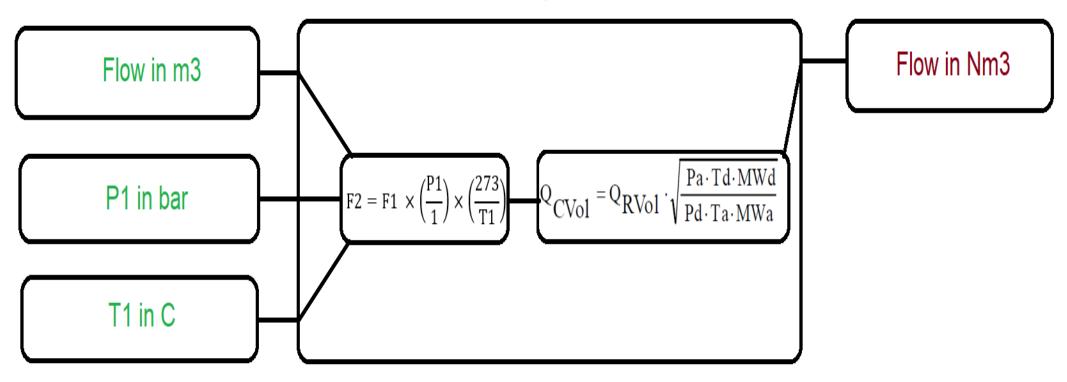
Where stated, pressure, temperature and mole weight compensation of flow is applied after

square root extraction of flow signal with the following algorithm:

	$Q_{CVol} = Q_{RVol} \cdot \sqrt{\frac{Pa \cdot Td \cdot MWd}{Pd \cdot Ta \cdot MWa}}$	or	$Q_{CMass} = Q_{RMass} \cdot \sqrt{\frac{Pa \cdot Td \cdot MWa}{Pd \cdot Ta \cdot MWd}}$
where Q _{CVol} Q _{RVol} Q _{CMass} Q _{RMass}	: Compensated flow [Nm ³ /h] : Uncompensated flow [Nm ³ /h] : Compensated flow [kg/h] : Uncompensated flow [kg/h]	P _a T _a Mw _a P _d T _d Mw _d	: Actual Pressure [bar a] : Actual Temperature [K] : Actual Mole Weight [kg/kmole] : Sizing Pressure [bar a] : Sizing Temperature [K] : Sizing Mole Weight [kg/kmole]

Gas and vapor flow measurements based on vortex meters are compensated by one of the following algorithms:

$$Q_{CVol} = Q_{RVol} \cdot \frac{Pa \cdot Td}{Pd \cdot Ta} \qquad \text{or} \qquad Q_{CMass} = Q_{RMass} \cdot \frac{Pa \cdot Td \cdot MWa}{Pd \cdot Ta \cdot MWd}$$


In case of failure of sensors used for compensation, then Pa, Ta or Mwa are to be replaced by Pd, Td or Mwd. If pressure, temperature and/or mole weight are not required, the factors must be removed in the above equation.

Flow compensation algorithms shall generally be configured with a plausibility check of compensating factors; i.e. if the factor values are outside predetermined limits, e.g. +/-15%, the limit factor shall be used for compensation, or in the case of sensor failure, the factors shall be set to the default (sizing) values. In both cases an alarm shall be initiated. Start-up flow loops with wide varying temperature and/or pressure shall be configured without limits.

Flow Compensation

GERMANY

W.EUROPE

JAPAN/CHINA

GERMANY/CHINA

GERMANY/CHINA

UK/CHINA

 XI'AN DONGFENG MACHINERY&ELCTRONIC CO.,LTD BEIJING MAIN-LEND INSTRUMENT 	CHINA CHINA
ULTRASONIC FLOWMETER	
 EMERSON FAURE HERMAN FUJI INSTROMET 	UK FR JAPAN NETHERLAND
KROHNE	GERMANY

HONEYWELL

KROHNE

OVAL

- ENDRESS & HAUSER
- EMERSON
- BOPP & REUTHER

MASS FLOWMETER (CORIOLIS TYPE)

VENDOR LIST